BEST PRACTICES FOR SELECTING AND SIZING LINEAR GUIDE WHEELS

Introduction
For over 50 years, Bishop-Wisecarver has been developing best practices for matching guide wheel systems to customer requirements, based on engineering and empirical experience. By sharing this knowledge and experience, selecting a guide wheel with the properties best suited for a given application is easy and results in a system that reduces design costs and engineering changes, as well as lower warranty, assembly, installation and mounting costs.

Linear Guide Systems
Linear guide systems are chosen for an application based not only on their precision and speed characteristics, but also on a host of other operating conditions such as environment, length, speed, duty cycle, and temperature, to name a few. Guide wheel systems should not be overlooked; in many applications and environments they have notable advantages.
Guide Wheel Advantages

Well-known for their ability to outperform recirculating ball technology in harsh environments due to their completely enclosed ball bearings and raceways, guide wheel systems also have lesser known distinct advantages. They routinely operate in environments with low noise level requirements, high (up to 500°F) or low (as low as -94°F) operating temperatures, washdown practices, and straightness tolerances as tight as +/- 0.001". Compared to other linear guide technologies, guide wheels have less friction, are much faster to assemble and are very cost efficient.

Match to the Application

By matching the component properties of a guide wheel system to a given application, engineers can ensure trouble-free operation over the system’s predicted lifespan, as well as reduced costs, lead time and field failures. The types of wheel and track selected must be matched to all application requirements, including environment, loads, accuracy, lifecycle and cost. Bishop-Wisecarver has developed a process for ensuring the best match of guide wheel system to application, beginning with the operating environment to calculate the required size of the wheel. The following is an overview of our best practices for bearing selection and sizing, which we find useful for satisfying specific application requirements.
BEARING TYPE SELECTION

The environment determines the type of guide wheel bearing protection required.

Sealed

Environments with heavy concentrations of liquid or fine powdery particulates can displace and/or change the properties of the bearing lubricant, causing premature wear and failure of the bearing balls and raceways. Specifying a sealed bearing for this operating environment can prevent damage to the bearing elements, ensuring the predicted lifespan of the system.

Shielded

Generally, shielded bearings are used in environments with heavy concentrations of large particulates such as metal flakes that can work their way between the balls and bearing raceways. The larger debris can cause premature wear and damage such as brinelling or spalling.

Sealed and Shielded

Bearings that feature shields and seals combine the advantages of both sealed and shielded wheels. The shield protects the seal from damage by large particulates, while the seal protects the bearing elements from the fine particulates and liquid that the shield is less effective against.

Special Configurations

The washdown bearing includes a patented inner seal and outer shield design. The design of the outer shield allows it to act as a momentary seal when subjected to pressure from high velocity fluid such as washdown spray. The pressure causes the shield to deflect and conform to the wheel's metallic surface. When the pressure is removed, the shield returns to its normal position, allowing liquid and debris that entered between the shield and seal to drain out or be spun out by centrifugal force when the wheel rotates.

Note: in contaminated environments, a de-rating factor based on the severity of the contamination must be used for proper sizing. This is discussed in the section on Load/Life equation - Sizing and Selection, Page 7.
MATERIAL SELECTION FOR LINEAR GUIDE WHEELS & TRACK

Linear Guide Wheels

Wheels are available in a variety of materials to suit a wide range of applications. The most commonly used materials are AISI 440C stainless steel, 52100 carbon steel, and polymer.

Stainless steel materials should be used in humid, liquid and corrosive environments. Although highly corrosion resistant, some corrosion can occur with stainless steel depending on the severity of the environment. AISI 440C stainless wheels are hardened to reduce abrasion and extend their lifespan.

Carbon steel materials are intended for general purpose use and are also hardened to reduce abrasion and extend their lifespan. They are suitable for most applications and are an economical solution. Polymer wheels offer certain benefits including chemical resistance, low friction, and low noise. Polymer wheels have a reduced load performance versus steel wheels, but polymer wheels provide an economical choice for light load applications and harsh chemical environments.

Linear Guide Track

Standard track materials include AISI 1045 carbon steel and AISI 420 stainless steel. Other track materials include aluminum, which can be used with polymer guide wheels. The 1045 is a medium carbon steel with good strength and hardness properties of 53 HRC (22-25 HRC unhardened), which minimizes wear. The 420 stainless steel contains just enough chromium to limit corrosion, yet can be hardened up to 45 HRC (20-22 HRC unhardened).

Stainless or carbon steel tracks are equally effective in environments with heavy concentrations of large particulates and flakes, because contaminants are swept away when the wheel passes over the track. Since the wheel has a smaller diameter at its inner vee compared to its outer vee, the wheel’s inner vee travels at a slower rate than the outer vee on the track, causing a VELOCITY GRADIENT that pushes the debris outward, resulting in especially clean track.

When selecting the track material, it is advised not to specify a material softer than the wheel material. This can result in the track material galling onto the wheel, damaging the track, wheel and payload, requiring time-consuming and expensive repairs to be made to the assembled system. However, a notable exception to this rule is that it is acceptable to use hardened steel track material with steel wheels despite the track having marginally less hardness than the wheels.
BEARING TYPE SELECTION

Temperatures
Guide wheels can accommodate up to 500° F for operation in environments with high temperatures, and as low as -94° F for operation in low temperature applications. If accuracy is a crucial issue, stainless steel wheels can be heat treated to the point where it becomes very thermally stable, which minimizes growth. Carbon steel, stainless steel and polymer wheels all can withstand the temperature and duty cycle of an autoclave. To sterilize instruments and equipment, an autoclave must reach a minimum of 121° C (250° F) for 30 minutes.

Lubrication
Lubrication is the key to maintaining a long service life and minimizing field failure. Internally, guide wheels are lubricated for life with and extreme pressure, corrosion resistant grease, but the lubrication of the wheel/track interface is the responsibility of the user. Lubricator assemblies prevent damage to bearings and help prevent corrosion, even in stainless steel systems. In our experience, most bearing failures are caused by inadequate, complete lack of, and/or wrong type of lubricant.

OPERATING NOISE

Sound Generation
Industrial environments generally tend to be forgiving of loud noise. However, loud noise is an issue in applications that are in contact with the general public. For example, patients can be unnerved when in contact with noisy medical devices. Noisy guide way systems for CAT Scan and Magnetic Resonance Imaging equipment can make patients needlessly uncomfortable. Guide wheel technology can result in a 20% noise reduction compared to square rail or round rail systems with recirculation ball bearings.

The ball bearings in a guide wheel follow a constant radius raceway path while the ball bearings in square rails follow an oval raceway path with widely varying radii. A square rail has straight sections with radii a the ends, which make a 180° arc. The ball bearings move along alternating straight and semi-circular paths to form a complete circuit. The sudden change in the ball's trajectory when transitioning from the straight to the semi-circular section causes increased noise and vibration.
LOADING CONDITIONS

Loads
The service life of a properly designed guide wheel system is limited to that of the most heavily loaded wheel bearing. Therefore, loads must be evaluated to predict the lifespan, minimizing warranty and in-field repair costs. However, load evaluation can be fairly tricky, so it is extremely important to understand exactly the conditions under which the guide wheel will be used.

Generally, we start with determining whether the loads are radial and/or axial.

- \(F_R \) : Radial load refers to the load applied in a direction perpendicular to the axis of rotation.
- \(F_A \) : Axial load refers to the load applied in a direction parallel to the axis of rotation.

We use a formula based upon empirical data, which is very easy to apply and reasonably accurate with regard to lifespan based upon field experience. See section on Load/Life Equation - Sizing and Selection, page 7.
LOADING CONDITIONS

Loads (Continued)

Standard bearing equations will yield inaccurate data for wheels that are axially loaded because the axial load is not uniform on the wheel. Axial loading will, in fact, result in a moment load on the wheel, causing uneven loading on the ball bearings (unlike a thrust bearing where the load is distributed equally on all of the balls). The wheel can accept higher moment loads by increasing the radial preload although this will result in a much higher wear rate.

Motion systems with guide wheel equipped wheel plates can be subjected to both linear and moment loading conditions. Moment loads on a wheel plate are forces that cause torque loading around the wheel plate’s coordinated axes.

Another way to think about moment loading is in respect to an airplane in flight.

\[M_p \]: Pitch Moment Load, can be thought of as an airplane climbing or descending when using the elevator. Pitch moments take place when a force wants to tilt the wheel plate up or down.

\[M_r \]: Roll Moment Load. When an airplane banks left or right using the ailerons on the wings, this is considered movement in the roll direction. A roll moment occurs when the wheel plate is subjected to a load that makes the wheel plate want to tilt like an airplane banking.

\[M_y \]: Yaw Moment Load, occurs when an airplane turns left or right using the rudder. The wheel plate is subjected to loading that forces the wheel plate to want to rotate left or right.

LOAD/LIFE RELATIONSHIP

Consideration for Life

Several factors influence the service life of a guide wheel system. We have devised a simple method to estimate the load/life relationship for a specific guide wheel system under defined loading conditions. This methodology accounts for the size of the bearing elements, relative spacing, and orientation, location and magnitude of the load. The equation is based on clean and well-lubricated track conditions. For applications where lubrication is prohibitive, a derating factor must be applied.

It is important to note that secondary considerations such as maximum velocity, acceleration rates, duty cycle, stroke length, environmental conditions, the presence of shock or vibration, and extreme temperature ranges can all impact service life to varying degrees. As such, this sizing method is considered only as a guideline for guide wheel components and assemblies.
LOAD/LIFE EQUATION - SIZING AND SELECTING

The load/life estimation requires a basic understanding of the principles of statics, the ability to work with free-body diagrams, and the capacity to resolve externally applied forces on a wheel plate into the radial and axial reaction forces at each guide wheel in the design. The life of a guide wheel system is limited to the life of the most heavily loaded bearing in the design.

Step 1: Calculate the resultant radial (F_R) and axial (F_A) loads reflected to each bearing element in the linear guide design.

All standard considerations involved in statics calculations must be accounted for, including inertial forces, gravitational forces, external forces such as tool pressure, bearing element spacing, and magnitude and direction of the payload. Any external forces that generate a reaction through the wheel/track interface must be considered.

Step 2: Calculate the load factor (L_F) for the most heavily loaded guide wheel bearing.

$$L_F = \frac{F_A}{F_{A(max)}} + \frac{F_R}{F_{R(max)}}$$

- F_A = Resultant axial load on the guide wheel
- $F_{A(max)}$ = The maximum axial working load capacity of the guide wheel
- F_R = Resultant radial load on the guide wheel
- $F_{R(max)}$ = The maximum radial working load capacity of the guide wheel

Step 3: Calculate the life estimate by applying the load factor to the load/life equation.

$$\text{Life} = \left(\frac{L_C}{(L_F)^{1/3}} \right) A_F$$

- L_F = Load Factor
- L_C = Load Constant
- A_F = Adjustment Factor

Adjustment Factor (A_F)

Due to varying application load and speed parameters and environmental conditions, an appropriate adjustment factor (A_F) must be applied to the life equation. Adjustment factor application conditions include contamination, duty cycle, speed, acceleration, shock and presence or lack of lubrication.
LOAD/LIFE EQUATION - SIZING AND SELECTING

Calculation Example

Assume the application applies the following loads on one individual guide wheel:

\[
F_A = 50 \text{ lbf} \\
F_R = 100 \text{ lbf}
\]

Selected wheel size = 2
Operating environment = Moderate shock loading and contamination with intermittent motion

Following the outlined procedure, we know the information for Step 1, Radial (\(F_R\)) and axial (\(F_A\)) loads on each wheel, therefore we are ready to calculate:

\[
F_A = 50 \text{ lbf} \\
F_A^{\text{max}} = 141 \text{ lbf (from table, page 7)} \\
F_R = 200 \text{ lbf} \\
F_R^{\text{max}} = 596 \text{ lbf (from table, page 7)} \\
L_C = 3.47 \times 10^6 \\
A_{F^{\text{max}}} = 0.06 \text{ (estimated base upon the environment)} \\
\text{Life} = 3.47 \times 10^6 / (0.69)^3 \times 0.6 = 6.33 \times 10^6 \text{ inches of travel}
\]

WHEEL PLATE CONFIGURATIONS

How to Properly Design a Wheel Plate

In designing a wheel plate, it is important to use the right combination of eccentric and concentric guide wheels depending on the configuration. The linear system should always have two concentric wheels while the remaining guide wheels should be eccentric. The eccentric wheels are used to eliminate play (clearance) between the wheels and tracks and allow preloading of all the wheels so that they roll smoothly instead of sliding or skipping on the track. If the wheel plate is loaded in the radial direction, the concentric wheel should support as much of the radial load as possible.

It is important to note that the optimal locations of the eccentric and concentric wheels relative to an applied radial load are dependent on whether the tracks are between or outside of the wheel plate’s two rows of wheels.
WHEEL PLATE CONFIGURATIONS

Example Wheel Plate Configurations

Below are several wheel plate configurations.

- Concentric Guide Wheel
- Eccentric Guide Wheel
- Radial Loading

![Wheel Plate Configurations](image)

WHEEL BEARING PRELOAD

Preload of Bearing to Linear or Rotary Guide Track

Wheel plate preloading creates radial loading between the wheels and tracks that exists when the system is not loaded by another outside force, and serves to eliminate play between the wheel and track.

Preload can be determined by:

\[
\text{Preload} = \frac{\text{Measured Wheel Plate Breakaway Force}}{\text{(# of Wheels X Coefficient of Friction)}}
\]

During assembly of the system, the wheel plate should be placed on the tracks, without any load attached, and with the concentric wheels fully tightened and the eccentric wheels tightened just sufficiently to permit adjustment.

Preload adjustment is accomplished by gradually rotating the eccentric wheel bushing(s) until the tracks are held captive by the two sets of wheels on each side of the wheel plate, with no apparent clearance between the tracks and wheels and very light preload. Once this is accomplished, fasten the eccentric wheel(s) so that they hold their positions. Next, check each wheel for correct preload by rotating the wheel with your fingers, while holding the track stationary. The wheel should skid against the track with a small amount of resistance, but should still turn without much difficulty. If rotation is not possible, the preload should be reduced accordingly by readjusting the eccentric wheel(s).

Caution must be used when applying preload because too much preload on the wheels can cause premature failure. The rated radial load should never be exceeded by the preload and subsequent radial loads applied to the wheel when in service. Note that preloading cannot compensate for large variations in track parallelism tolerances which can occur in long travel length systems.
CONCLUSIONS

Guide Wheel Based Motion Systems

Motion guidance systems based upon guide wheel bearing technology have several distinct advantages over other guidance technologies. They are designed to perform in contaminated and extreme environments where heavy debris is present, and in a wide range of temperatures. Because they are ball bearings the exhibit very low friction and provide smooth and quiet operation. Several types are available as standard including versions in carbon steel and stainless steel. There are also several types of protection methods available that are designed for specific operating environments and they include seals, shields, seal/shields, washdown, and custom protection options. The guide wheels roll on linear guide track to provide precise motion and the hardness of the materials needs to be closely matched to avoid rapid wear rates. The operating temperature must be considered because it can effect the lubrication, and ultimately the service life of the system. The linear tracks can be mounted to a variety of support structures that range from unmachined supports to precision machined structures for improved accuracy. Loading conditions need to be considered when selecting and sizing a guide wheel application and all load scenarios result in an axial load and a radial load on the bearing. Torquing loads will generate moments on the bearings and can be thought of like an airplane maneuvering in the pitch, yaw, and roll directions. Many factors can influence the estimated life of a guide wheel based motion system but calculations are possible based upon equations that are verified against imperical data. The load/life relationship can be calculated and evaluated for acceptability based upon given application loads. Guide wheel based motion can be assembled from components into wheel plate assemblies that consist of multiple wheel bearings. Preload adjustment can be accomplished by rotating the eccentric mounted guide wheel to accomplish proper fit-up to a parallel set of linear guide tracks. This whitepaper was written to provide an overview of the basic concepts of linear guide wheel based motion systems and additional supporting materials are available to guide your understanding of this technology.

ABOUT

Bishop-Wisecarver develops innovative motion solutions that are expertly designed and delivered to perform from a company you can trust. Leveraging nearly 70 years of experience, we've earned the reputation of providing unmatched quality, reliable service and engineering support for every stage of a customer’s design cycle. No matter your application, volume shipment requirements or extreme environmental conditions, Bishop- Wisecarver listens to your specific needs and delivers innovative solutions.